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1 INTRODUCTION 
 
1.1 Identification of Document 
 
This is the Developer Guide for the Synergistic Engineering Environment (SEE) Build II 
software. This guide and the SEE software was prepared by Analytical Mechanics 
Associates, Hampton VA.  For inquiries please contact Doug Murphy at Doug@ama-
inc.com. 
 
 
1.2 Scope of Document 
 
This revision of the Developer Guide is applicable to release 1.3 of the SEE Build II 
software, released June 2004.   
 
 
1.3 Purpose and Objectives of Document 
 
This document is intended to provide background on the SEE Build II software to aid 
future developers in planning upgrades, adding new features and integrating new analysis 
tools.  As of this release of the SEE, information about using this software for the Comet 
and Asteroid Protection System (CAPS) project is available in a separate report. Section 
2 contains full cites for applicable documents and resources, including the SEE User 
Guide and the SEE CAPS Module Guide.   



SEE Developer Guide 

7 

 
1.4 Document Status and Schedule   
 
This is revision G of the Developer Guide.  Revisions are planned for each future 
software release in which substantial architecture changes or additions are made.   
 
Revision  Date    Change Log 
 
      -  March 2002  Initial Release 
     A July 2002 Added discussion of Solar System Object 

inheritance hierarchy, scene graph building and 
classes for interfacing with dynamics models.  
Included references to the SEE CAPS Module 
Guide. 

     B December 2002 Added description of solar system initialization, 
mission wizard, SEE object libraries, collision 
detection and image capture. 

    C February 2003 Added description of plotting, analysis tools, 
Bookmarks.  Plus misc. revisions.  

    D April 2003  Added descriptions of movie capture, macros,  
    “New Craft” wizard, jet plume 
    visualization.  
    E August 2003  Simulation time description updated. Qt Assistant  

description added.  Dynamics model section 
revised. DDEX file format diagram revised. 

    F December 2003 Added description of joint dynamics models and 
sun-tracking system.  SEE file system section 
added. 

   G June 2004 Added sections on inertia calculations, dynamics 
model for NORAD two-line element sets, path 
rendering. 
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1.5 Document Organization 
 
The following fonts are used to highlight special terms: 
 

courier new  Program names, C++ class names, code fragments 
or variable names. 

 
italic Terms with specific connotation in the SEE context. 

 
  
 
2 RELATED DOCUMENTATION 
 
2.1 Applicable Documents 
 
These documents are referenced herein or are directly applicable to the SEE architecture: 
 
1.  Synergistic Engineering Environment Build II, Guide to the Comet and Asteroid 

Protection System (CAPS) Module, Analytical Mechanics Associates Inc., 
Hampton VA,  July 2002. 

 
2.  Synergistic Engineering Environment Build II  Users Guide, Analytical 

Mechanics Associates Inc., Hampton VA,  June 2004. 
 
3. On-Orbit Assembly, Modeling, and Mass Properties Data Book, Volume I, 

International Space Station Program, DAC8, Revision Sequence E, NASA 
Johnson Space Center, August 1999. 

 
4. Method for Propagating the Orbital Elements of the Solar System for the 

Synergistic Engineering Environment, AMA Report No. 01-28, Analytical 
Mechanics Associates Inc., Hampton VA, 2001. 

 
5.  The Astronomical Almanac For the Year 2003, Nautical Almanac Office, United 

States Naval Observatory, U.S. Government Printing Office, Washington, D.C., 
2002. 

 
6.  Bate, R., Mueller, D. and  White, J., Fundamentals of Astrodynamics, Dover 

Publications, New York, 1971. 
 
7. Battin, R.H, An Introduction to the Mathematics and Methods of Astrodynamics, 

Revised Edition, American Institute of Aeronautics and Astronautics, Inc., 
Virginia, 1999, pp. 194. 

 
8. SEE-ARCD Integration Report, , Analytical Mechanics Associates Inc., Hampton 

VA,  June 2004. 
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2.2 Information Documents 
 
The OpenGL Programming Guide, Third Edition, Mason Woo, Jackie Neider, Tom 
Davis, Dave Shreiner, OpenGL Architecture Review Board,  Addison-Wesley, Reading, 
MA 1999. 
 
International Space Station Synergistic Engineering Environment Version Beta 0.60 
Users Guide, Analytical Mechanics Associates Inc., Hampton VA,  December 2001. 
 
Architectural Design Description of the International Space Station Synergistic 
Engineering Environment, Analytical Mechanics Associates Inc., Hampton VA,  
December 2001. 
 
2.3 On-Line Resources 
 
These on-line resources are used in the development and configuration management of 
the SEE project: 
 
http://centauri.larc.nasa.gov/see  

The SEE public website.  Provides a summary of the current and planned 
capabilities of the SEE. Links to the see developer home page where registered 
users can log-in and submit bug reports and feature requests. 

 
ftp://griffin.larc.nasa.gov/usr/people/medusa3/shield/cvsroot/seebuild2 

The CVS repository for the SEE source code. 

http://centauri.larc.nasa.gov/see
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3 MOTIVATION AND GOALS 
 
3.1 Background 
 
Build I of the SEE, known previously as the ISS SEE, was originally commissioned to 
demonstrate prospective features of a new engineering tool for visualizing the combined 
results of analysis programs used for work on the International Space Station.  The final 
release of the ISS SEE Build I was completed in December 2001.  Build II is a follow-on 
to that project, and aims to continue and further the capabilities of Build I with the focus 
expanded to include the modeling and visualization of solar system exploration scenarios 
in addition to operations of the ISS. 
 
Build I of the SEE made use of the MuSE 3D commercial application programming 
interface (API) for management of the graphical scene.  Support for the MuSE software 
was discontinued by the vendor at the end of 2001.  By that time it was also becoming 
clear that the SEE Build I software architecture had reached a point where the addition of 
new requirements would require significant changes to the core code.  In order to 
continue to support the continued development of the SEE, a complete re-write of the 
code was undertaken for Build II.  
 
3.2 SEE Build II 
 
The goal of the SEE Build II project is to design a space mission simulator with emphasis 
on providing an interactive three-dimensional virtual environment in which to view the 
results.  Experience with the Build I project showed that the ability to examine the 
geometry of the vehicles and solar system bodies moving in the scene, as prescribed by 
the results of analysis tools, was beneficial both in understanding the scenario and 
communicating the results to others1.  
 
As with Build I, a major design goal of Build II is to include the capability to allow the 
user to combine a variety of data sets into a single environment.  In Build I this data 
included spacecraft positions and attitude, joint articulation data, thruster jet firing 
histories, robot arm movements and other properties of spacecrafts.   The planets and 
moons of the solar system were simulated exclusively by an engine internal to the SEE 
program.  By the end of the Build I development, work on features for importing planet 
and moon position and orientation data was just beginning. The design of Build II will 
emphasize the capability to select internal or external data sources for any object in the 
scene2.   
 
Where possible and efficient, the SEE will aim to provide methods that interface directly 
with external analysis tools.  This type of interface would allow the user, for example, to 
identify a spacecraft currently being viewed in the SEE environment for a new dynamics 
analysis.  The SEE program would then export the properties of the selected spacecraft in 
a format compatible with the target analysis tool, run the analysis, and import the results. 
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3.3 Requirements 
 
The specific requirements for features desired in the Build II SEE were based on those 
for Build I.  Features that were seldom used on Build I have been de-emphasized or 
scheduled for late development on Build II, so that more commonly used features will get 
priority.  The requirements for new or refined capabilities have come from team leaders 
and team members in the Revolutionary Aerospace Systems Concepts (RASC) Activity 
at Langley Research Center (LaRC), and also from members of the International Space 
Station (ISS) Vehicle Integrated Performance and Resources (VIPER) team at Johnson 
Space Center.  RASC projects that have or intend to use the SEE include the Hybrid 
Propellant Module and the Comet and Asteroid Protection System (CAPS).  The SEE 
CAPS Module Guide contains detailed requirements for CAPS features of the SEE. 
Requirements from the VIPER team focus on the systems engineering aspects of the ISS. 
 
The top-level requirements for the system include the capability to run on Windows PCs, 
as well as the Linux and IRIX operating systems.  The software will serve primarily as a 
space mission visualization tool but will be extensible to allow developers to integrate 
analysis algorithms as required by the users.   
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4 ARCHITECTURAL DESIGN DESCRIPTION 
 
4.1 Tools 
 
The SEE  project is comprised of several related tools.  The SEE executable is the 
primary application.  Support applications include the Dynamics Data Extraction 
Program (DDEX) and the Articulated Rigid Body Control Dynamics Program (ARCD).  
DDEX is a tool used for converting CAD databases to SEE compatible format, and 
consists of a C++ program and CAD scripts.  ARCD is a Fortran program developed by 
NASA and is used for evaluating the dynamics of a spacecraft in Earth orbit. Most of the 
functionality of the SEE program is independent of these support tools. They are not 
required to be part of an SEE distribution to a particular customer. 
 
The SEE main program source code is object-oriented and written in C++.  Several third 
party libraries are utilized.  The 3D graphics API is Gizmo 3D.  The window library is 
QT, including the Qwt extension for plotting features.  Collision detection utilizes the 
PQP libraries.  Gizmo and QT are briefly described below.  PQP is discussed further in 
section 4.15. 
 
 
4.2 Gizmo 3D 
 
The decision to search for an existing high-level graphics API to replace MuSE, rather 
than to develop a custom library, was motivated by the development schedule.  It was 
determined that most of the graphics requirements of the SEE were likely to be found in 
an existing API, and that the time invested in learning to use that library would yield a 
better return than developing and testing a custom solution.  The desired requirements for 
the graphics API included Windows, IRIX, and Linux platform compatibility, fast 
rendering algorithms capable of supporting up to 500,000 polygons at interactive rates, 
availability of double precision support for transformation matrices, and free or 
affordable run-time licenses.  Support for double precision appeared to be the limiting 
factor for most of the prospective choices. 
Gizmo 3D from Tooltech Software met the list of requirements and passed preliminary 
performance evaluations, including a small program designed to stress the frame rate by 
using high polygon-count models.  Gizmo is available for Windows, IRIX and Linux, and 
contains built-in routines for loading popular tessellated model formats such as Discrete’s 
3D-Studio and SGI’s Performer.  The Gizmo API is built upon OpenGL and adds 
functions for building a scene graph using node objects. The scene graph aspects of the 
library appear to be similar to the functions provided by Performer and Inventor.  A 
drawback of the Gizmo API as of this writing is a lack of documentation. 
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4.3 QT 
 
For the same reason that an existing 3D API was sought, it was decided to use an 
available software package for creating cross-platform graphical user interfaces.  QT 
from Trolltech software was selected to replace Tcl/TK – the library used for SEE Build 
I.  The QT libraries are written in C++, thus the QT function calls can be integrated 
directly with the SEE source code.  This advantage allows the GUI signals to be 
communicated to the SEE functions without the need for additional code to handle inter-
process communications3.  QT has a significant user-base, is available for the three 
platforms of interest, and comes with a visual GUI building environment for automatic 
code generation.  While Gizmo itself provides some limited interaction tools to allow the 
developer to detect keyboard and mouse events, it contains no features for creating the 
familiar graphical “widgets” (e.g. scroll bars and push buttons).  The authors of Gizmo 
have recently identified QT as their primary API for the development of GUI interaction 
with the Gizmo system. 
 
The Qwt (QT Widgets for Technical Applications)  library  is an open source project that 
adds plotting routines and other functions to QT.  The plotting capabilities of the SEE 
make use of this library.  The Qwt project web page is at 
http://sourceforge.net/projects/qwt. 
 
4.4 Functional Decomposition 
 
The routines and data files comprising the SEE can be thought of as belonging in one of 
the following function categories:  user interface, visualization, simulation tools.  One of 
the design goals for the project is to keep the source code divided into modules, based on 
their function, using these categories.  This modularization is intended to aid in making 
the code extensible, reducing the file dependencies required for compilation, and 
allowing concurrent development.  Appendix A shows the top-level directories for the 
files in the project with descriptive annotations.  The source code for the main SEE 
executable is divided into subdirectories one level deep.  With the exception of utilities 
such as the math libraries and the initialization codes in main,  the sources in each of the 
subdirectories should support only one of the function categories.  
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The user interface category is comprised largely of QT objects (referred to as widgets), 
which includes the application main window, the dialog boxes, and familiar graphical 
user interface widgets.  The software architecture will support the custom configuration 
of the GUI, and allow the configuration to be saved separately for each user.   
 
The Visualization category includes routines for building the graphical representations of 
the solar system model, spacecrafts, ground stations, asteroids, comets and other rendered 
items in the scene. For each of these items, an instantiated object of the appropriate C++ 
class is added to an SEE object hierarchy.  Each SEE object in turn has a representation 
as a gzNode object in the Gizmo scene graph.   
 
The SEE graphical objects are organized by type (Figure 2), with each type belonging to 
a manager class responsible for instantiating and updating the objects.  The program 
execution proceeds through an event loop created by the system manager; a high level 
class responsible for the program flow of control.   In each pass through the event loop 
the object managers update the position, orientation and other dynamic properties of all 
their child objects. 
 
4.5 The Event Loop 
 
The SEE program runs in an event loop as depicted in Figure 1.  The initialization phase 
occurs at application startup.  Part of the initialization phase includes instantiation of a 
QT timer object.  The function of this timer object is to send out a signal that all user-
request (e.g. keyboard and mouse inputs) have been received and processed by their 
respective signal handlers.  When this signal is received by the system manager, the 
update, draw, and respond routines are called in order4. 
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Figure 1:  SEE Event Loop

INITIALIZATION 
 
The startup state of the application, including which objects are present 
in the scene and the user interface preferences, are read from 
configuration data files. 

UPDATE 
 
The current simulation time is updated.  The position, orientation and 
other parameters in the scene are calculated. 
 

DRAW 
 
The rendering phase.  The scene is culled and all visible objects are 
scan converted 

RESPOND 
 
User feedback events are processed. 

exit application? Done 
Y

N



SEE Developer Guide 

16 

 

4.6 SEE Objects 
 
Figure 2 shows the arrangement of the top level classes used for SEE objects. Classes 
Planet and Craft are derived from class SeeObject.  Class SeeObject has as a member 
seeType so that the child objects may be easily identified. 
 
 
 

 
Figure 2:  SEE Graphical Object and Reference Frame Hierarchy 
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Class Hierarchy is used to keep track of the parent-child relationships of the SEE objects 
and the reference frames to which they are attached.  The distinction between the objects 
and their reference frames is important since the hierarchy may be different for each.  The 
hierarchy of SeeObjects is designed to facilitate the way we are likely to think about the 
organization of the scene and is used to build the selection lists for the GUI.  The 
hierarchy of RefFrame objects reflects the structure of the transformation matrices in the 
scene graph.  To illustrate, if a user creates a new earth-orbiting satellite using a 
dynamics data set in a heliocentric reference frame, the SeeObject created for the 
satellite will have the Planet object “Earth” as a parent.  However, since the dynamics 
data that describes the position and orientation of that satellite is relative to the Sun, the 
design reference frame of that satellite will have the inertial or Sun frame as a parent. 
 
4.7 Hierarchies 
 
There are three tree-structured hierarchies maintained within the SEE: the SeeObject 
hierarchy, the Rf hierarchy, and the scene graph.  The SeeObject hierarchy maintains the 
inheritance structure of the all SeeObjects, primarily for the user interface purposes.  For 
instance, since the Earth orbits the Sun, one would set the Earth as a child of the Sun.  
Likewise, a craft orbiting a planet would consider that planet as its parent (even if the 
data describing the orbit were heliocentric coordinates). 

 
Figure 3: SEE Object Hierarchy 

 
The scene graph is a structure of Gizmo3D objects, called nodes.  A node could be 
anything from a positional transform to actual geometry.  Gizmo3D traverses the scene 
graph a number of times during each rendering cycle.  Except for camera position, all 
rendering information is stored within the scene graph. 
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Figure 4: The Scene Graph 
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Figure 5: The Rf Hierarchy 
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The Rf hierarchy is a subtree of the scene graph, containing only the transforms.  The Rf 
object is, in fact, derived from the gzTransform node.  The Rf hierarchy is used to locate 
the positions of objects for either analytical or graphical purposes.  For instance, a line of 
sight from the Earth to Mars requires the heliocentric positions of each.  And tethering of 
cameras to objects requires their graphical positions (possibly different from the 
heliocentric position due to orbit scaling). 
 
 
4.8 Solar System Objects 
 
Real or physical objects are represented in the SEE by one of the subclasses of 
SolarSystemObject (Figure 6). These objects are distinguished by the fact that they 
must have mass properties, whereas other objects such as coordinate axes, vector arrows 
and camera icons may have a graphical representation in the scene but do not have mass.  
Class SolarSystemObject is abstract.  Instantiated objects of the class will be of one of 
the inherited types:  SimpleObject, ArtificialObject, or NaturalObject.  Class 
SimpleObject is designed to represent either minor planets or crafts with no articulating 
parts.  Crafts of this type will not be able to change their orientation to support a given 
flight mode.  This class is intended to support the creation of a large number of objects 
such as an asteroid field or a large constellation of satellites, whose orbit data will likely 
be read from a data file or generated automatically rather than typed in via the GUI. 
Class ArtificialObject encapsulates man-made objects such as satellites and space 
stations that are likely to have named flight modes, design reference frames, articulating 
parts and instruments.  Currently the features to support flight modes and articulating 
rigid bodies are all implemented in the Craft subclass.  The current version of 
ArtificialObject is actually a placeholder, which will be expanded in future SEE 
revisions as necessary.  Models for craft subsystems such as power, thermal and ACS 
will interface with this class. 
Class  NaturalObject encapsulates features that support the simulation of planets, 
moons and minor planets.  The orientation of these objects will be constructed using 
equatorial reference frames and spin axes or poles.  Atmospheric and gravitational 
models will interface with this class. 
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Figure 6:  SolarSystem Class Inheritance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Classes Craft and Dynamics Model 
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4.9 Dynamics Models and Paths 
 
All real objects being modeled in the SEE will have a path in space, and therefore must 
be connected to a system that generates time dependent position data.  Algorithms that 
generate this data, and optionally orientation, velocity and acceleration data, are 
encapsulated in class DynamicsModel.  To create a SolarSystemObject that requires a 
path through space, the SEE instantiates an appropriate DynamicsModel according to the 
parameters provided by the user (e.g. a model that calculates position and velocity 
according to Kepler’s equations may take a series of orbital elements as initialization 
data).  The DynamicsModel is used in conjunction with class see_path to ultimately 
generate the splines that will be used to render the object trajectory.  Class see_path  is 
used to provide a consistent interface between SolarSystemObjects and their paths.  In 
practice, the SolarSystemObject must be of type SimpleObject, Craft, or 
NaturalObject, since assemblies and parts of crafts do not require independent paths. 
 
Figure 7 shows the DynamicsModel classes and the relationship of class craft to 
DynamicsModel.  Classes derived from DynamicsModel all provide, at a minimum, 
position versus time data relative to their parent SEE object in some form.  Class 
GroundObject will return latitude, longitude, and altitude versus time.  To resolve the 
heliocentric or planet-centric position of such an object, the SEE must also query the 
planet on which the object is placed for it’s position and orientation data. Classes 
KeplerBody and KeplerNewton provide two methods for positioning an object according 
to Kepler’s laws. These methods are described further in sections 4.9.1 and 4.9.2. Class 
TrajBody is designed to interface with a discrete set of position versus time data that 
might be stored in a file. Classes StockPlanet and CustomPlanet are specifically 
designed to support the placement and orientation of NaturalObjects.  These classes are 
used to interface with “black-box” solar system simulations that have a library of planets 
and moons referenced by name.  An example is the “Orrery”, the SEE internal solar 
system simulator.  Planets driven by the Orrery are instantiated with StockPlanet 
dynamics models.  At update time these objects query the Orrery for the planet position 
and orientation by supplying only the planet (or moon) name and a simulation time. 
Class CustomPlanet is a placeholder designed to allow planets to be created using the 
same algorithms used in the Orrery but that have custom initialization data (e.g. an 
approximated Earth model with zero inclination and eccentricity). 
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In every craft there will be a dynamics model which generates the position and another 
dynamics model which generates the orientation.  This orientation is generated by the 
AttitudeManeuver dynamics model. In the future, additional dynamics models could be 
implemented for a craft to control joint motions. 
 
Attitude Maneuvers Architecture 
 
The architecture of the AttitudeManeuver dynamics model supports multiple 
maneuvers.  This relationship is shown in Figure 8. The AttitudeManeuver class has a 
std::map< SEEdate, Maneuver*> of Maneuver objects which are created for each of 
the craft's maneuvers.  When the  craft goes through an update, the current simulation 
time is sent to the AttitudeManeuver class.  This simulation time is then checked against 
the starting and ending times of the craft's maneuvers.  If any of the maneuvers are 
determine to be valid at this time, the calculation of the orientation matrix is computed in 
the Maneuvers class.  There are three types of maneuvers: Absolute, Relative, and 
Constant Rotation.  For Absolute maneuvers, the final orientation is specified with 
respected to the craft's flight mode.  The Maneuver class interpolates the orientation of 
the craft as it updates during the specified time period.  To accomplish this, the starting 
and ending orientation matrices are converted to quaternions and spherical linear 
interpolation is performed at each update.  In the case of a Relative maneuver the only 
difference is that the starting matrix used is the current orientation of the craft at the start 
of the maneuver.  The Relative maneuver is therefore just an offset of the craft's 
orientation.  For the constant rotation case the craft is rotated about one of the three 
principal axes at a constant rate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8:  Maneuver classes 
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4.9.1 Dynamics Model Class:  KeplerBody 
 
The dynamics model class KeplerBody is used to implement the two-body model for 
positioning an object in an elliptical or circular orbit about a primary body.  It accepts the 
classical orbit elements of an object (a, e, i, ω, Ω, M) and returns the position and 
velocity of that object in the same reference frame to which the orbital elements were 
referenced.   
 
Limitations: 
When calculating the true anomaly of the spacecraft for the current time from the value 
of mean anomaly, this routine uses an approximation [Ref. 5, pp. E4] given by:  

MeMeMeeM 3sin)12/13()2sin()4/5()sin()4/2( 323 ++−+=ν  [+…] 

where ν is the true anomaly, M is the mean anomaly, and e is the orbit eccentricity.  This 
approximation becomes less and less accurate as the eccentricity increases from a value 
of zero.  It is very accurate for near circular orbits, and the error is zero for circular orbits.  
The error is not cumulative over multiple orbits, it is rectified each ½ orbit.  The 
maximum error occurs somewhere between a true anomaly of 70 and 120 degrees and 
then again between 250 and 300 degrees, but the approximation yields zero error for 
values of M=ν=0 and M=ν=180. 
 
Two error values were calculated for illustration.  The maximum magnitude of the error 
in true anomaly (difference between actual and calculated), and the resulting maximum 
positional error of the object as a percent of the orbit semi-major axis.  These error 
magnitudes are illustrated in Figure 9. 
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Figure 9: Maximum Error introduced into object position by Keplerbody approximation. 

 
 
 
Usage: 
 
Keplerbody provides  a very rapid and computationally non-intensive way to obtain the 
position and velocity of an object given the orbital elements.  It should only be used for 
objects with low orbit eccentricity (probably < 0.15, depending on allowable error) where 
speed of calculation is of primary concern, and absolute accuracy is secondary. 

 



SEE Developer Guide 

26 

4.9.2 Dynamics Model Class:  KeplerNewton 
 
The Keplernewton dynamics routine in the SEE is to be used for elliptical and circular 
orbits about a primary body.  It accepts the classical orbit elements of an object (a, e, i, ω, 
Ω, M) and returns the position and velocity of that object in the same reference frame to 
which the orbital elements were referenced. 
 
The solution technique is one in which the true anomaly of the object is calculated from 
an iterative solution to Kepler's Equation: 
 

)sin(EeEM −=  
 

where M is the mean anomaly, E is the eccentric anomaly, and e is the eccentricity of the 
orbit.  The Newton iteration scheme used for solving for E given an initial guess at M is 
well documented [Ref. 6, pp. 221], and entails making a guess for E, calculating M, and 
then revising the guess for E based upon the result until convergence is achieved between 
the known value of M and that from the equation above. 
 
At the time of model review, the initial guess for the first value of E in the iteration 
technique was taken from Battin [Ref. 7, pp. 194]: 
 

)sin()sin(1
)sin(

MeM
MeME

++−
+=  

 
where M and E are measured in radians.  This approximation provides a very good 
estimate for orbits with low eccentricity, or for all orbits where M is less than a value of 
π.  It was noticed, however that when M was between π and 2π for orbits with high 
eccentricity the approximation became very poor as illustrated in Figure 10. 
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Comparison of Actual M vs. E to approximation used for 
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Figure 10.  The real relationship between E and M as compared to Battin's approximation for initial guess. 

 
This poor approximation actually led to a rapid increase in the number of iterations 
required for convergence on a value of E when M was near 5.3 radians.  Although the 
typical Keplernewton solution should take 5-30 iterations to converge, for eccentricities 
above 0.9 the number of iterations escalated to the tens of thousands. 
 
The Newton iteration technique is known to converge for all values of eccentricity (e) for 
an initial guess of E=π, but convergence can be slower than for an initial guess closer to 
the real value of E.  The number of iteration steps required to converge for each initial 
guess approach was investigated.  A Matlab script was created that performed the 
convergence iteration for both initial guesses at each value of E from 0 to 2π, and for e 
from 0 to 1.  For each value of e, the maximum number of iterations required for any 
single convergence was extracted, and is shown in Figure 11.  The figure clearly 
illustrates that for high eccentricity orbits (e > 0.9), that convergence is much more 
quickly performed by using π as an initial guess. 
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Figure 11.  Comparison of the maximum number of iterations required for convergence when using 
Battin's approximation as an initial guess versus using π. 

 
 
 It was also desired to know the approximate computational savings achieved by using 
Battin's initial guess, when appropriate, as compared to simply using a value of π for the 
initial guess in all scenarios.  Therefore, a new logic was implemented, called modified 
Battin, that simply used a starting guess of π if e was greater than 0.9, but would 
otherwise use the Battin initial guess.  The total number of iterations for convergence was 
calculated for E every 0.005 radians between 0 and 2π (every 0.3 degrees, or ~1250 
iterations/orbit) at each value of eccentricity between 0 and 1.  The result in the total 
number of iterations, and the number of iterations saved by using the modified Battin 
technique is shown in Figure 12.  The figure clearly shows that implementing a scheme to 
utilize the Battin initial guess as much as possible can lead to significant saving in the 
total number of iterations required per orbit. 
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The results above assume that M and E have values between 0 and 2π.  If the object of 
interest has traversed more than one complete orbits, factors of 2π should be removed 
from M (using a modulus function) before these calculations are performed.  Failure to 
do so will lead to a large increase in the number of iterations needed for convergence. 
 
 
 
 

 
Figure 12.  Total iteration steps required for convergence per orbit for Modified Battin versus using π. 

 
 
It should be noted that both the KeplerBody and KeplerNewton routines measure the 
right ascension of the ascending node (Ω) from the inertial reference direction (as 
opposed to the prime meridian of the primary body.)  The SEE source code and 
documentation may also refer to this quantity as the longitude of the ascending node.  
Applications including STK may make a distinction between the two, in which the 
longitude of the ascending node is referred to the prime meridian of the primary body 
rather than the inertial reference direction. 
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4.9.3 Dynamics Model Class:  TleSgp4  
 
The SEE dynamics model TleSgp4 is used for propagating spacecraft orbits described 
using the NORAD two-line elements sets (TLE) format.  TleSgp4 is an interface class 
between the SEE dynamics models and the library of routines provided publicly by 
Michael F. Henry (http://www.zeptomoby.com/satellites/ ). The README file from the 
Henry libraries is included below.  Additional information on the NORAD TLEs can be 
found at http://www.celestrak.com. 
 
README file from the C++ NORAD SGP4/SDP4 Implementation by Michael F. Henry: 
---------------------------------------------------------------------------------------------------------- 
 
Documentation for C++ NORAD SGP4/SDP4 Implementation 
Developed by Michael F. Henry 
December, 2003 
 
Copyright © 2003. All rights reserved. 
 
The files in this package implement the SGP4 and SDP4 algorithms 
described in the December, 1980 NORAD document "Space Track Report No. 
3". The report provides FORTRAN IV implementations of each. These two 
orbital models,  one for "near-earth" objects and one for "deep space" 
objects, are widely used in satellite tracking software and can produce 
very accurate results when used with current NORAD two-line element  
datum. 
 
The original NORAD FORTRAN IV SGP4/SDP4 implementations were converted 
to Pascal by Dr. TS Kelso in 1995. In 1996 these routines were ported 
in a straight-forward manner to C++ by Varol Okan. The SGP4/SDP4 
classes here were written by Michael F. Henry in 2002-03 and are a 
modern C++ re-write of the work done by Okan. In addition to 
introducing an object-oriented architecture, the last residues of the 
original FORTRAN code (such as labels and gotos) were eradicated. 
 
The project files were compiled using Microsoft Visual Studio 7.0. Any 
compiler that supports the C++ Standard Template Library should work, 
including Visual Studio 6.0. The project generates a single executable, 
SxP4Test.exe, which calculates ECI position and velocity information 
for the test element sets originally published in the NORAD  
report. Also provided as an additional example is how to use the 
classes to calculate the look angle from a location on the earth to a 
satellite in orbit. 
 
A brief description of important classes: 
 
cTle  This class encapsulates a single set of NORAD two line elements. 
 
cEci  This class encapsulates Earth-Centered Inertial coordinates and 
velocity for a given moment in time. 
 
cOrbit  Given a cTle object, this class provides information about the 
orbit of the described satellite, including inclination, perigee, 
eccentricity, etc. Most importantly, it provides ECI 
coordinates/velocity for the satellite. 

http://www.celestrak.com/
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CSite  Describes a location on the earth. Given the ECI coordinates of 
a satellite, this class can generate Azimuth/Elevation look angles to 
the satellite. 
 
cNoradBase, cNoradSGP4, cNoradSDP4  These classes implement the NORAD  
SGP4/SDP4 algorithms. They are used by cOrbit to calculate the ECI 
coordinates/velocity of its associated satellite. 
 
For excellent information on the underlying physics of orbits, visible 
satellite observations, current NORAD TLE data, and other related 
material, see http://www.celestrak.com which is maintained by Dr. TS 
Kelso. 
 
Michael F. Henry 
December, 2003 
---------------------------------------------------------------------- 
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4.9.4 Path Rendering 
 
The drawing of all orbit paths and trajectories in the SEE is done using straight line 
segments.  To achieve a smooth curve appearance, the length of the line segments is 
automatically adjusted based on the distance from the path to the camera.  A spline is 
used to calculate intermediate points required to subdivide the segments (Figure 13).  The 
resulting path segments always pass through the original data points. In the case of a 
discrete data set, the original points are those that exist in the discrete data file. In the 
case of Kepler and other computer orbits, the original data points are those that were 
computed by the get_graphics() function.  
 
The spline function used to create intermediate data points utilizes velocity data when 
available, or computes an estimated velocity when this data is not provided.  Care should 
be taken when attempting to draw a path using non-uniform time steps without providing 
velocity data, as the resulting spline may not be a good fit for the path. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Path LOD Rendering 
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4.10 The Orrery 
 
The SEE internal solar system simulator is referred to as the Orrery. This model may be 
used in the case where the user does not have or does not wish to use position versus time 
data generated by some external source.  A list of planets and moons desired at 
application start-up is maintained in a configuration file.  
 
In most cases the Orrery uses the dynamics model KeplerBody  to determine the position 
and velocity of a planet or moon at a given time. An exception is the moon of Earth, 
which uses a special routine for improved accuracy.  Section 4.10.1 describes this moon 
model.  
 
The Orrery uses an application wide epoch and compares it to the current simulation time 
to generate a time delta for the current pass of the event loop.  This time delta is used for 
calculating the position of the bodies along their orbits (e.g. true anomaly).  The 
application epoch is also maintained in a configuration data file, read at application 
startup.  Figure 14 shows a UML diagram of the classes comprising the Orrery. 
 
 
4.10.1 Dynamics Model Class: Moon 
 
Moon is a routine for determining the position and velocity of the Earth Moon (hereafter 
known as Moon or the Moon).  The position information is based upon the low-precision 
formula for geocentric coordinates of the Moon, taken from the Astronomical Almanac, 
(pp. D46 for the Year 2000, and pp. D22 for the Year 2003) 
 
It is stated that the errors from this technique will "rarely exceed 0.3° in ecliptic longitude 
(λ), 0.2° in ecliptic latitude (φ), and 0.2 Earth radii in distance (r)".  The root-sum-square 
absolute positional error from this technique should then be between 2800 km (using an 
average moon orbit radius of 384,400 km) and 3400 km (using a maximum moon orbit 
radius of 403,620 km).  These values are based on an Earth radius of 6378 km, and make 
small angle approximations for the positional error in ecliptic latitude and longitude. 
 
The current moon dynamics model is still being reviewed.  Preliminary documentation of 
the accuracy of this model as implemented in the SEE is provided in section 5. 
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Figure 14:  Orrery Class Structure 
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4.11 Crafts 
 
A craft object in the SEE will normally be a man-made orbiting body such as a space 
station, satellite, or telescope.  A complex craft such as the ISS may contain a number of 
features including articulating rigid bodies connected by joints (e.g. rotating solar panels), 
instruments, antennas, cameras, robots and visiting vehicles.  The initial beta release of 
the SEE aims to model the spacecraft geometry and mass properties.   
 
At a minimum an SEE craft requires a path in space over which it travels, and a 
geometric model for rendering.  User-interface features will allow the user to generate 
orbits or trajectories by supplying orbital elements,  position versus time data, and 
eventually telemetry streams.  Geometric models will be loaded from files or assigned 
default primitives (sphere, cube) if the user desires.  The SEE will include a library of ISS 
configurations based on the I-DEAS model files provided by the Systems Engineering, 
Modeling and Data Analysis (SEMDA) Laboratory at NASA Johnson Space Center. 
 
The SEMDA Lab periodically publishes updates to the space station assembly sequence 
in a Design Analysis Cycle (DAC) report.  This report contains estimates for the station 
mass and area properties for many of the planned station configurations, both with and 
without visiting vehicles.  New I-DEAS model files are released with each DAC update. 
 
The space station databases from SEMDA treat the space station assembly as a collection 
of connected rigid bodies.  Figure 15, reproduced from the DAC 8 report, identifies the 
rigid bodies in the completed station.  Each rigid body except the station core is 
connected to a parent body by a single pin joint (one degree of freedom). The station core 
has no parent, and is the only rigid body that does not contain a joint. Rigid bodies 
connected to the core are said to have an alpha joint.  Rigid bodies connected to alpha 
joint bodies are said to have beta joints, and so on. The rigid body names and 
identification numbers remain the same for all configurations regardless of the assembly 
stage.   
 
Each rigid body assembly is divided further into elements. An element is the smallest 
piece of the station for which there exists a single geometry file.  The number of elements 
in each rigid body changes as new elements are added or moved as the assembly 
progresses.   
 
This arrangement in which a craft consists of rigid bodies that are further divided into 
elements is reflected in the architecture of the C++ classes in the SEE (Figure 16). 
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Figure 15:  ISS Rigid Body Diagram (DAC8) 
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Figure 16:  SEE Craft Classes 

 
The ddexreader, appearing at the bottom left of Figure 16, is a class for parsing a file 
format (*.ddex) containing the assembly, mass properties and model file data for a given 
craft.  An SEE utility program called the Dynamics Data Extractor (DDEX) is used to 
create the ddex file from an I-DEAS model database.  I-DEAS is currently the only CAD 
package supported by the DDEX utility. 
 
The ddex file can be thought of as the assembly specification for the spacecraft 
configuration.  It contains the hierarchy of the rigid bodies, the position and orientation of 
each rigid body joint (known as the rigid body pin) 5, and the position and orientation of 
each element (known as the element object matrix).  It also contains mass properties data, 
user notes, and an assembly tree reflecting the organization of the parts as they were 
stored in the original I-DEAS database. Element names contained in the ddex file are 
used by the application to locate associated vertex data files and to populate element 
selection lists for the GUI. 
 

The DDEX utility also automatically creates geometry data (VRML files) from the I-
DEAS database. These VRML (*.wrl) files are then converted to Performer binary files 
that are compatible with the Gizmo 3D engine.   
 
Figure 17 shows how the SEE crafts objects relate to the reference frames in the scene 
graph.  Note that the craft object hierarchy shows all rigid bodies as siblings on the tree, 
whereas the reference frame hierarchy is arranged to reflect how the rigid bodies are 
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physically connected (e.g. the solar panel arrays are children of the Port Inboard Alpha 
truss).  The organization of the reference frame hierarchy reflects the way the reference 
frame objects are organized in the scene graph, where leaf nodes will inherent the 
transforms of their parents.  The organization of the craft objects reflects the way in 
which rigid bodies are created within I-DEAS.  This organization will also be used in the 
selection interface design, where the rigid body names can aid the user in locating 
elements or assemblies of interest. 
 
 
 

 
 
 

Figure 17:  Craft Objects and Reference Frames 
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4.12 Inertia Calculations in the SEE 
 
 
The DDEX file reports the mass properties for each part comprising the craft, including 
an inertia matrix.  This section describes how the part inertia data is used to calculate and 
report inertia data at higher levels such as for rigid bodies and the entire craft assembly. 
 
Below is an excerpt from the DDEX file for ISS DAC 8 Assembly C088_16A describing 
the PMA 2 part: 
 
 
 
 
Begin Part 
  idNumber: 146 
  part: 013_PMA2_2A1 
  userName: 013_PMA2_2A1 
  modelFile: 013_PMA2_2A1.pfb 
  parentID: 143 
  transform: 
    1  0  0 
    0  -1  0 
    0  0  -1 
    15.5241  -0.00187954  9.70336 
  mass: 1164.9 
  centerMass: 
    -1.42983  -0.00176584  4.47705 
  inertia: 
    677.174  -0.838519  -193.784 
    -0.838519  837.023  -1.3915 
    -193.784  -1.3915  750.094 
End Part 
 
 
 
 

These inertia values are with respect to the local part reference frame with the origin at 
the center of mass.  To transform these inertia values to be with respect to the frame of 
the parent assembly, the translations and rotations in the transform matrix need to be 
applied.  This is done using the parallel axis theorem for translation and a similarity 
transformation for rotation. 
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The inertia values reported in the DDEX file are the inertia metrics.  The moments of 
inertia (the values along the diagonal) are always positive. The products of inertia (the 
off-diagonal elements) are the positive integrals. In the example above,  the values for 
the products of inertia and the inertia tensor would be written like this: 
 
Products of Inertia: 
 

∫ === xydmIyxIxy -0.838519   

∫ === xzdmIzxIxz -193.784 

∫ === yzdmIzyIyz -1.3915 

 
 
 

The Inertia Tensor using the negative integrals would be: 
 
 Ixx         -Ixy        -Ixz                               677.174  0.838519  193.784 
-Ixy         Iyy        -Iyz                 =            0.838519  837.023  1.3915 
-Ixz        -Iyz        Izz                                 -193.784  -1.3915  750.094 
 
 
 

This inertia tensor reported using the negative integrals is consistent with the ISS DAC 8 
book (On-Orbit Assembly, Modeling, and Mass Properties Data Book, Volume I, 
International Space Station Program, DAC8, Revision Sequence E, NASA Johnson 
Space Center, August 1999). On page 7-11 of the DAC book the mass properties for 
PMA 2 are reported there as follows: 
 
Mass (kg): 1165 
 
Center of Mass [mm]:  
X = -1430 
Y = -2 
Z = 4477 
 
Inertia Tensor [kg*m^2] 
677                    1                         194 
1                       837                        1 
194                   1                           750 
 
Notice that the products of inertia have different sign than the values in the DDEX file. 
 
The note on page 7-3 of the DAC 8 Book says this regarding the inertia tensor: 
“Note: Products of inertia specified in element properties tables are reported using 
negative integrals.” 
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Inertia Report in the Mass Properties GUI 
 
The SEE mass properties interface follows the DAC 8 book convention of reporting the 
products of inertia as negative integrals.  The figure below shows the interface reporting 
the PMA 2 properties: 
 

 
 
Note that the products of inertia are negative integrals, consistent with the DAC 8 
Book.



SEE Developer Guide 

42 

Calculating the Inertia of an Assembly 
 
To calculate the inertia matrix for an assembly of parts, the inertia data for each part must 
be accounted for.  For parts that are in the same orientation as the assembly, only the 
translation of coordinate system needs to be applied using the parallel  axis theorem.  For 
parts in a different orientation, the part inertia matrix must be expressed in the parent 
frame using a similarity transformation. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Translation of Coordinate System 
 
To calculate the inertia of a mass M in new coordinate system A, we use the Parallel Axis 
Theorem. 
 

)( 22
11 COMCOM zyMIxxxIx ++=                 )(11 COMCOMyxMIxyyIx −=      

)( 22
11 COMCOM zxMIyyyIy ++=      )(11 COMCOMzxMIxzzIx −=  

)( 22
11 COMCOM yxMIzzzIz ++=       )(11 COMCOMzyMIyzzIy −=  

 
 [ref:  Spaceflight Dynamics, William E. Wiesel, Irwin/McGraw-Hill 1989 p108] 
 
Here we are using the negative integrals for the products of inertia, e.g.: 
 

xydmIxy ∫−=  
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Rotation of Coordinate System 
 
When the part transform includes a rotation matrix R, the inertia in the new coordinate 
system I1 is calculated by: 
 

I1 = RIRT 

 

[ref http://www.syscon.uu.se/Personnel/vs/InertialMatrix.pdf] 

 
This equation is referred to as a similarity transformation (e.g angles are preserved for 
shapes transformed by the matrices). 
 
 
Summing the Integrals 
 
When the inertia tensor for each part in the assembly has been translated to the assembly 
center of mass and rotated to match the parent coordinate frame, the inertia for the 
assembly is obtained by summing the inertias of each part. We used the negative integrals 
for the products of inertia when performing the translation for the parallel axis theorem, 
so the resultant inertia matrix for our assembly contains the negative integrals.   
 
Mass Properties Code 
 
Mass properties calls are generally implemented in the SEE as virtual functions in class 
SolarSystemObject.  The function solarSystemObject::getInertiaMatrix() 
Always returns the inertia tensor using negative integrals for the products of inertia.  The 
code in class SolarSystemObject performs the translation, rotation and summation of 
the inertia tensors for all child objects of the assembly for which the function was called.  
The function is only overridden in subclass part, where it simply returns the inertia 
tensor of the part.  Even in class part, the matrix returned contains the negative integrals. 
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EXCERPT FROM IDEAS DOCUMENTATION  
 
(May 23, 2000) “InertiaProperties.html” 
 
The Sign on the Products of Inertia 
 
One final point on the Products of Inertia: it has been stated by more than one user that 
there are two conventions for defining the Products of Inertia. One method includes a 
minus sign on the Products of Inertia and the other does not. This author is not precisely 
sure from where this "convention" comes, but he can hazard a guess.  
First of all, this author has not been able to find any reference to this "convention" in any 
textbook or dynamics book that he has perused, and he has looked at several. However, 
there is a very likely candidate for where the concept might originate. As stated before, 
the most basic rotational motion equation is:  
 

(1)  T = I*alpha 
 

where "T" is the torque which must be applied to create an angular acceleration of 
"alpha" for a body which has Mass Moment of Inertia "I". The terms in this equation 
are actually matrices. The "I" matrix is a symmetric matrix and it contains what we refer 
to as the Moments of Inertia (the diagonal terms in the matrix) and the Products of 
Inertia (the off-diagonal terms in the matrix). The "I" matrix looks as follows:  
   

           Moment of Inertia Matrix
       

 
 

Ixx Ixy Ixz 

(4)  
 

Ixy Iyy Iyz 

 
 

Ixz Iyz Izz 
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EXCERPT FROM IDEAS DOCUMENTATION - continued 
 
Sometimes the Products of Inertia are written as Pxy, Pxz, etc. There is another matrix 
equation in angular motion. It is the angular momentum equation. In matrix form, the 
equation is:  
 

(5)  H = I'*omega 
 

where "H" is the momentum matrix, "omega" is the angular velocity matrix, and "I'" is 
the Inertia Tensor matrix, and not the Moment of Inertia matrix. This Inertia Tensor 
matrix looks almost identical to the Moment of Inertia matrix except for the sign on the 
off-diagonal terms (the Products of Inertia). Here is the Inertia Tensor:  
   

           Inertia Tensor Matrix
       

 
 

Ixx -Ixy -Ixz 

(6)  
 

-Ixy Iyy -Iyz 

 
 

-Ixz -Iyz Izz 

       

     
Again, notice that the Inertia Tensor matrix (I') looks almost the same as the Moment 
of Inertia matrix (I) except there is a negative sign on every Product of Inertia term 
(the off-diagonal terms) in the Inertia Tensor.  
I-DEAS is calculating the elements of the Moment of Inertia matrix, not the Inertia 
Tensor matrix, therefore, there is no negative sign "added" to the computed values. Or to 
put it in terms as originally stated by some users, I-DEAS does not "add" a negative sign; 
if a Product of Inertia is a negative value, it is a negative value because that is the value 
it has when it appears as an element in the Moment of Inertia matrix.  
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4.13 Joint Models 
 

Each rigid body on a given craft is connected to it’s parent body by a joint.  At present, 
only one-degree-of-freedom joints are supported in the SEE, although the architecture is 
designed to enable the addition of more complicated joints by extending the subclasses 
of  JointModel. Class JointModel currently handles the generation of joint position 
data for pin joints or linear joints.   
 Linear joints (subclass JointLinScript ) move according to a user-specified schedule 
(e.g. rates or positions specified over selected intervals of time). Pin joints can be 
programmed to move according to a user-specified schedule (class JointRevScript ) or 
they can be identified as sun-tracking joints (class JointSunTrack).   
The user describes the desired motion or “joint rules” for each rigid body for a selected 
craft using the joint-articulation interface.   These rules include information on when to 
start and stop the joint motion and how the joint should move over the selected interval.  
A new JointRule structure is instantiated for each interval.  The information in the 
structure is used to instantiate and initialize the JointModel class of the appropriate 
type. 
Each rigid_body maintains a list of it’s own joint rules.  At each pass through the SEE 
event loop, rigid_body uses the current simulation time to look up the joint-rule that 
applies for the current time.   Like all dynamics models in the SEE, the joint model code 
must be capable of calculating the requested output data using only the input data 
available at the current simulation time. Integration over time intervals or using the 
position data from the previous event loop is not allowed since the SEE time navigation 
interface allows random access to time. 
 
Sun Tracking vs Scripted Mode 
 
Both linear and pin joints support a “scripted” joint motion.  In this mode the joint 
position is calculated simply by multiplying the joint rotation (or slide) rate by the 
elapsed time, and adding this value to the initial joint position.  The elapsed time is the 
difference between the current simulation time and the craft epoch. Note that if the craft 
epoch is changed, the start-time for the joint motion elapsed time calculation is changed 
as well.  The joint rotation rate is a user-input supplied via the joint articulation dialog.  
The rate can be entered directly or can be derived from position and time entries in the 
joint motion description. 
 
Only pin joints support sun-tracking mode.  In this mode, the current simulation time is 
used only to determine if sun-tracking has been requested for the current frame.  Sun 
tracking is implemented identically for both alpha and beta joints.   
The algorithm is initialized by providing a “pointing vector” and a “pin vector”.  The 
pointing vector is the vector which is desired to be pointed at the sun.  This is a user 
input, e.g. the direction normal to the cell-side of the solar array, or the edge of an 
articulating radiator panel. The pin vector is the positive sense (right-hand-rule) of the 
joint rotation axis.  The pin vector direction is supplied in the craft DDEX file. 
During a scene update, the algorithm attempts to minimize the angle between the 
pointing vector and the direction from the joint location to the sun.  With both alpha and 
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beta joints operational, perfect tracking should be achieved.  If only one joint is tracking, 
the angle may be non-zero. 
The sun-tracking joint model will accept an offset value to be applied to the position 
result (e.g. “always add +5 degrees to the optimal sun-tracking position”) but does not 
accept joint position or rate limits.   
 

 
4.14 Visiting Vehicles 
 
A visiting vehicle object in the SEE is used simulate and render a docking or undocking 
procedure.  As a type of craft, visiting vehicles maintain all craft functionality.  In 
addition, they contain the information necessary to locate the ports of the docking and 
target vehicles.  In order to weaken the dependency of a visiting vehicle and its target 
vehicle, the final architecture for visiting vehicles will separate this information.  All 
crafts will maintain the locations of their docking ports relative to the design reference 
frame.  A visiting vehicle manager will coordinate the analysis of data (using software 
such as DOCKSIM), as well as the rendering of docking trajectories.  The manager will 
require all visiting and target vehicles to register their port locations. 
 
4.15 Collision Detection 
 
Collision and proximity analysis is available in the SEE between any two crafts.  The 
collision analysis determines at any given time step or series of time steps if any two 
objects have intersecting geometry.  The proximity analysis indicates the minimum 
distance between any two objects. 
 
These features are implemented in the SEE via the PQP application programming 
interface.  The PQP API was created by the Gamma Research Group at the University of 
North Carolina (gamma.cs.unc.edu).  PQP provides the user the ability to check 
proximity, tolerances, and collision between polygonal based objects.  There are no 
topological restrictions on the objects being tested, such as convex hulls and holes in the 
surface.   Each object is treated as a polygon cloud.  To use PQP, the software developer 
must create PQP objects for those models to be tested.  This is done by providing the 
PQP software the vertex data for each of the polygons belonging to the collision object.  
This data is provided in the objects design reference frame.  For the SEE, a subroutine 
was created to extract out all of the polygons for each of the graphical models currently 
loaded in the scene.  Therefore, no knowledge of what type of model was loaded into the 
application is required.  After all of the polygons have been added to the PQP Model, the 
developer can call the PQP libraries and test for proximity distances, tolerance violations, 
and collisions.  For each of these tests, the test requires the user to provide a position and 
orientation for each part to be tested. 
 
A proximity test is an exhaustive test of all polygons of each model being analyzed.  
Upon completing this test, the PQP libraries provide the developer with the point in each 
model that represents the closest distance between the objects.   This data is provided in 
local coordinates of each model.   For a tolerance test, the user can ask the PQP software 
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to check to see if the distance between two objects violates a given user specified 
tolerance distance.  This test is similar to the proximity test, except that if a distance is 
found less than the tolerance, the PQP libraries stop checking for other closer distances.  
The two points that form the distance violating the tolerance distance can be queried from 
the libraries.  For a collision detection test, the PQP libraries check to see if any polygons 
on the two models are intersecting.  The user can specify one of two options for this test.  
The user can tell the PQP libraries to stop checking for collisions once one collision is 
found, or the PQP libraries can be told to continue to check and extract all collisions.  A 
query for if a collision occurred and a list of colliding polygons can be obtained from 
PQP.  Again, the data is provided back in local coordinates to the collision models. 
 
Preliminary testing of the PQP software in the SEE indicates that even for scenes with 
polygon counts in the 100,000 to 200,000 range the collision detection algorithm will run 
at reasonable frame rates.   
 
4.16 Cameras, Rendering Windows, and Navigation 
 
When a user asks the SEE to create a new graphical (or rendering) window, the program 
must create a virtual camera, located and oriented within the scene, and connect the 
camera view to the screen space occupied by the rendering window.  The rendering 
window also accepts mouse and keyboard inputs to allow the user to navigate.  Thus the 
classes that control the graphical (or rendering) window, the virtual camera, and 
navigation through the scene are closely related.  Figure 18 depicts the relationship of the 
main classes for these functions. 
 
The rendering window is created using class GWindow, a simple Qt window.  Requesting 
a new GWindow object creates a new camera.  The GWindow houses a GWidget, the Qt 
rendering widget.  The GWidget class forms the primary handshake between Qt and 
Gizmo3D.  It is a Qt widget that contains the Gizmo3D rendering object, a gzWindow.  In 
the construction of a GWidget, a Camera object is assigned, paralleling the Gizmo3D 
gzCamera assigned to the gzWindow. The Camera object maintains a link to the 
gzCamera, and is responsible for updating the gzCamera’s settings on a per frame basis. 
 
One or more Scene objects will be instantiated within the application.  A Scene object is 
responsible for monitoring the construction of a Gizmo3D scene graph with a gzScene 
root node.  A Scene must be assigned to a Camera before rendering with a call to 
setScene.  A Camera’s scene may be changed with repeated calls to setScene.   
 
Camera navigation is controlled by means of an MVTransformer object.  Subclasses of 
MVTransformer control specific navigational behavior (such as trackball or fly modes) 
and accept keyboard and mouse events.  Currently two transformer classes are available, 
MVKMFlyTransformer and MVKMTrackballTransformer.  These classes are instantiated 
within a GWidget object, which passes Qt keyboard and mouse events to the transformer.  
The GWidget is also responsible for determining the current transformer to be used by the 
Camera.  The transformer translates keyboard and mouse events into a position and 
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orientation matrix for the camera.  The Camera uses this matrix to update the Gizmo3D 
gzCamera. 
 
Cameras are deleted when the parent GWindow is deleted.  The GWindow is set to have a 
destructive close, so that close events result in the deletion of the GWindow, GWidget, 
Camera, transformers, and corresponding Gizmo3D gzWindow and gzCamera.  The Scene 
and gzScene objects persist. 
 
 
A snapshot of the active camera view can be saved in several file formats including .bmp, 
.jpg and .png.   Image capturing within the SEE is a two-phase process.  The first phase 
captures the rendered scene into memory by use of the Gizmo gzImageRender class.  In 
effect, a rendering pass of the scene graph is made with the resulting image stored in 
memory (as opposed to being displayed on a monitor).   In order to handle depth 
buffering issues, the gzImageRender class has been subclassed to perform multiple 
rendering passes, far to near.  In the second phase of the process, the resultant image is 
transferred to a QPixmap object, an SEE "stamp" is applied to the image, and the image is 
saved to disk in the desired graphics format. 
 
 
 

 
 

Figure 18:  Rendering and Navigation Classes 
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4.17 The Simulation Time System 
 
The simulation time is stored internally as a Julian Date in the SEEdate class.  Two 
double precision floating point variables are used to store this value.  The first double 
represents the number of days elapsed since 4713 BC January 1, Greenwich noon, 
truncated to the nearest whole number of minutes.  The second double represents the 
number of seconds, between zero to sixty,  beyond the current minute.  Stored in this 
way, the date and time can be resolved to roughly 1.0e-13 seconds for years between 
4713 BC and 22,666 A.D.  Any time dependent variables in the SEE will be updated 
once per event loop, based on the Julian Date for the current frame.  For algorithms that 
operate on an elapsed time (such as the Kepler orbit creation routines), the delta-t is 
computed by comparing the current Julian Date is to the epoch being used for that 
algorithm. 
 
All delta times are returned in seconds only.  This limits the resolution on the addition or 
subtraction of time from a selected date depending on the value of the delta.  For 
example, when adding  946728000.000000 seconds  (~30 years) to a selected date, the 
available precision is limited to 1.0e-6 seconds by the 15 available digits in the seconds 
field. 
 
The SEEdate class overloads the appropriate C++ math operators to allow differencing 
dates, adding or subtracting times from the selected date, and comparing dates. Input and 
output stream operators are also overloaded to allow quick access to string versions of 
dates at any a configurable precision. Time zones are supported by the SEEdate class but 
are not used in the current version of the SEE (all time zones are entered and reported as 
UTC ). 
 
When the simulation time is running, the rate of the passage of simulation time is 
configurable by the user.  The precision of the SEE time system allows the time rate to 
span between one one-thousandth real time and thousands of years per second.  The 
simulation time for a given frame is calculated by polling the operating system clock at 
successive passes through the event loop, multiplying this elapsed real time by the user 
specified time rate multiplier, and adding it to the simulation time for the previous frame 
(Figure 19). 
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Figure 19:  Preparing the Simulation Time 
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4.18 Building the Mission 
 
The collection of objects in a given scene is referred to in the SEE as a “mission”.  A 
mission will contain a model of the solar system containing a model of the Sun and any 
additional planets, moons, crafts and other SEE objects added by the user. Data files 
containing libraries of objects that can be added, deleted, or modified during the 
application session are provided as part of the SEE and are referred to as “stock” objects.  
After a stock object is added to the scene the user may modify the parameters that 
describe that object and export the modified version as a “custom” object.  These custom 
objects are saved in a user-writeable directory and are available for import to other 
missions. 
 
All of the information required for the stock planets is hard-coded into a std::map 
member of class SolarSystem.   This  std::map stores the name, parent, number of 
children, source type, texture map, texture offset, and number of points for the orbit path.  
The hard-coding of this information enables the setup of the solar system using only the 
names of the desired planets and moons.  This listing is placed in the file solar_system.ini 
included with each mission.  An example of the file is shown below: 
 
Example of a solar_system.ini file: 
 
[SOLAR SYSTEM] 
 
[STOCK PLANETS] 
EARTH 
MOON 
JUPITER 
IO 
EUROPA 
#End of List# 
 
[CUSTOM PLANETS] 
Custom Planet = Mars2 
 
 

The custom planet “Mars2” will be described further in the object subdirectory of the 
same name.  In this subdirectory the file with the planet name and a “.psys” extension 
will list properties of the planet and its moons.  Note that moons cannot be imported or 
exported separately from planets – they are always stored together as a “planetary 
system”.  An example file is shown below: 
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File Mars2.psys: 
 
[DESCRIPTION] 
Name = Mars2 
Notes = Custom Mars System 
Primary = Sun 
Number of Children = 2 
 
[DESIGN REF FRAME] 
Name = J2000 
Parent = Ecliptic 
Base_Source = Kepler 
Base_Source_File = kepler4.ref 
 
[PYHSICAL PROPERTIES] 
Mass = 0.64185e24 
Equatorial radius = 3394.0 
 
[GRAPHICS] 
Model = sphere 
Tex Map = mars/marsx.png 
Tex Offset = -90.0 
 
[PATH] 
Red = 0.3294118 
Green = 0.000000 
Blue = 1.000000 
orbit_scale=1.0 
num_pts=100 
 
========================= 
[CHILDREN] 
========================= 
Name = Phobos 
Notes = Custom Mars System 
Primary = Mars2 
[DESIGN REF FRAME] 
Name = J2000 
Parent = Equatorial 
Base_Source = Kepler 
Base_Source_File = kepler2.ref 
[PYHSICAL PROPERTIES] 
Mass = 0.0000000106e24 
Equatorial radius = 13.0 
[GRAPHICS] 
Model = sphere 
Tex Map = mars/phobos/phobosx.png 
Tex Offset = -90.0 
[PATH] 
Red = 0.5 
Green = 0.000000 
Blue = 1.000000 
orbit_scale=1.0 
num_pts=100 
[END OF ENTRY] 
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The systemParser class handles the reading of this file and stores the desired planets 
and moons in a std::vector.  This  std::vector is then iterated and the required 
information is extracted out of the  std::map member of the SolarSystem using the 
object's name.  This creates the solar struct in the  systemParser which is used to 
retrieve the ephemeris data out of the solar_system_data.ini file.   
 
A wizard interface is provided at application launch to handle the retrieval of a saved 
mission or to create a new one to be used in the current session.  A mission is stored as a 
directory tree in a user-writeable directory path specified with the environment variable 
SEE_USER.  An example of a mission directory tree is shown below: 
 
Example Mission Directory Tree: 
 
c069_12a-dac8 
 | 
 c069_12a 
             | 
             craft.dat 
             c069_12a.ddex 
             default.man 
             kepler.ref 
 | 
 solarsystem 
             | 
             solar_system.ini 
 | 
 mission.dat 

 
 
 
All missions are loaded from a temporary subdirectory “/working” under SEE_USER. 
Retrieving a saved mission is implemented by replacing the current working directory 
with the contents of the directory tree for the incoming mission. The file mission.dat 
located at the top level of the mission directory tree contains links to all other optional 
files needed to load the requested objects.  An example file is shown below: 
 
Sample Mission.dat file: 
 
[MISSION] 
Title = ISS 12a (DAC 8) 
Description = Default mission for 12a 
 
Start Year = 2003 
Start Month = 4 
Start Day = 10 
Start Time = 12:00:00 
 
[CRAFTS] 
Craft = c069_12a 
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New crafts may be added to the current mission interactively using the New Craft wizard 
interface. When this new craft is loaded the system will go through a check to enforce 
name uniqueness among the crafts already in the scene.  Initially the craft directory is set 
to match the craft name entered into the wizard by the user. To make sure that the adding 
of this craft does not overwrite any of the existing crafts already in the working directory, 
it checks to see if this craft directory is unique.  If its not unique, it is appended with a 
number before it is copied into the working directory.  The next check for uniqueness 
occurs in class craft where the craft's name is checked for uniqueness.  If its name is not 
unique, the name is appended with a number.  Once the craft name and directory have 
gone through their uniqueness checks, the craft is then added to the mission.dat file of 
the working mission.  This enables the mission with the new craft to be resumed after an 
exit or saved during a session. 
 
4.19 Bookmarks 
 
The Bookmarks feature of the SEE enables the user to save and recall some of the 
environment settings in order to allow the given view to be easily re-constructed.  As of 
version beta 0.40, these environment settings include the simulation time, the scaling 
factor that has been applied to any object in the scene, and the icon objects that have been 
added to the scene.   
 
The elemental class of the bookmarks feature is a virtual class called marker. The objects 
of the marker subclasses (scalemarker, timemarker, iconmarker) contain the data to 
be saved and retrieved (e.g. an object scale, simulation time or icon state).   An object 
scale marker, for example, may contain scaling parameters for some or all of the objects 
in the current mission. Collections of Markers are assembled into objects of class 
Bookmark.  A Bookmark object may contain any number of marker objects which need 
not be of the same type.   
 
Routines for creating, deleting, loading, saving and otherwise managing the user’s 
bookmarks is encapsulated in the class BookmarkManager.  Separate activate functions 
are provided in the BookmarkManager to retrieve and use the information in the three 
types of markers.  Also in BookmarkManager are special functions for finding the nearest 
time marker, the nearest marker ahead of the current time, and the nearest prior time 
marker. 
 
4.20 Analysis Tools 
 
The SEE provides several analysis features for extracting quantitative information from 
the current scene.  While the specific implementation of these features is dependant on 
the type of analysis, the general architecture for a given analysis tool should follow one 
of two patterns.  For analyses that require data to be gathered over the course of a 
selected time span, the SEE analysis routine enables a flag that tells the event loop to 
make a pass through the data-gathering function of the corresponding analysis code with 
each frame update.  For analyses that are time-independent (e.g. the calculation of area 
properties for a selected craft) the SEE event loop is halted until the analysis is finished.  
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No commands are accepted from the user in this mode except those presented by any 
status dialog boxes displayed by the analysis routine (e.g. a ‘Cancel’ button to abort the 
analysis).  This version of the SEE does not utilize multiple program threads, so events in 
the background may not continue while the SEE event loop is halted. 
 
The Collision/Proximity analysis, Line-of-Sight analysis, Dynamics Report, and ARCD 
are all examples of time-dependent analyses.  The time-dependant analyses may be 
further classified into two types, distinguished by whether the routines require a fixed-
time-step analysis or a current-frame analysis.  A fixed-time-step analysis requires the 
SEE to collect data over a specified range of simulation time at specified intervals (time 
steps).  When this type of analysis begins, the simulation time jumps to the required value 
and a flag in the event loop is enabled to indicate that additional information is being 
requested by an analysis function.  When the current frame is complete, the simulation 
time is automatically advanced by one analysis time step.  The process completes when 
the analysis stop time is reached.  Data files and summary reports containing the results 
of the simulation can be viewed once the analysis has finished.  During a fixed-time-step 
analysis the user is not able to issue time navigation commands.  Depending on the 
specific analysis code, the SEE simulation time after the analysis is complete may be left 
at the last analysis time step, the first analysis time step, or the time at which the analysis 
was initially launched.  The Dynamics Report, CAPS Full Survey and ARCD are time-
stepped analyses.  The Collision/Proximity  tool has both a time-stepped mode and a 
current-frame mode. 
 
A current-frame time-dependent analysis such as the Line-of-Sight tool or the ‘current-
frame mode’ of  the Collision/Proximity  tool does not take over control of the SEE 
simulation time.  The user has full time and space navigation capability. However, since 
the data request by the analysis routine must be re-calculated every frame, the application 
frame rate may be impacted when an analysis of this type is enabled. 
 
The ARCD module of the SEE is described in further detail in the SEE-ARCD 
Integration Report [8]. 
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4.20.1 Area Report 
 
The Area Report function is an example of a time independent analysis routine.  Once a 
request to run the area report has been made, the event loop is suspended until the 
operation is complete. To display the current completion status of the command, a 
progress bar is displayed along with a cancel button to allow the user to abort.  Because 
the event loop is not active, the QT processEvents command must be called at regular 
intervals in the code that is used to collect the area data.  This command allows the 
progress bar to be re-drawn and the cancel command to be processed if one was issued. 
All procedures that suspend the event loop for significant periods of time should provide 
a progress status to indicate to the user that the SEE application is still functioning.  If 
possible a cancel or abort opportunity should also be provided. 
 
The SEE uses a routine called raytrace to calculate the projected areas of a craft from 
three directions, set by default to be +X, +Y and  +Z.  Arguments may be passed to this 
function to change the ‘wind’ direction and to select from one of three blockage factoring 
or “shadowing” modes: 
 

• No shadowing:  parts are not blocked by other parts when projected area is 
calculated. 

 
• Intra-body shadowing:  parts may block other parts within a rigid body, but do not 

block parts in other rigid bodies. 
 

• Inter-body shadowing parts may block any other parts, in the same or different 
rigid body. 
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4.21 Jet Plume Visualization 
 
Thruster jet plumes may be visualized in the SEE for crafts that contain jet firing data.  
The jets associated with a craft or visiting vehicle are described by a text file located in 
the craft subdirectory.  The file describes the color, size, shape, location and name of 
each jet on the craft.  Each jet description may optionally contain the name and format of 
a jet firing history file.  Currently supported jet firing history formats include the 
Docksim–RCS format, and a “Compact” format.  The Docksim-RCS format contains 
firing schedules for a number of thrusters in a single file. The thruster ID number is used 
as an identifier in this case to connect the jets to the correct firing data.  The Compact 
format contains a single jet firing history data set consisting of two columns, the jet firing 
start times and the firing durations.  The jets on a given craft can each be independently 
assigned a jet firing history in either of the currently available formats. 
The plume visualization controls are available in a large dialog box format that provides 
automatic help text, or in a compact dockable toolbar mode.  The controls allow the user 
to select a minimum opacity level that will be used for all jets to draw the plume cone 
when the thruster is not firing.  This mode can be used to examine the location of all the 
thrusters.  When the thruster is firing, the visualization can be done in one of two modes.  
In each mode the opacity level will be increased from the user selected minimum 
according to an algorithm designed to allow meaningful visualizations at various 
simulation rates.  These algorithms are designed to correct the problems caused when the 
elapsed simulation time between subsequent rendered frames is much larger than the 
typical thruster firing duration.  This is frequently the case since jet minimum on-times 
are usually in  the millisecond range, whereas docking maneuvers and other craft motions 
typically occur over minutes or hours.  Using a simple “on-or-off” algorithm to draw the 
thruster cone at the rendered frame may produce poor results under these conditions, e.g. 
making a constant duty cycle appear erratic, making high duty cycles appear as steady-
state firing, and missing low duty cycles altogether.  The solution implemented here 
utilizes a time sampling window centered on the current frame to increase the jet opacity 
according to the amount of jet on-time that occurred in the window. When the jet fires 
through the entire sampling window, the jet opacity is set to 100%. 
 In “automatic sampling” mode, the size of the window is automatically adjusted 
according to the current simulation time rate.  Specifically, increasing the time rate will 
grow the sampling window so that short pulses will not be missed.  Slowing the time rate 
will shrink the window, allowing the jet firing times to be resolved more accurately.  In 
“manual” sampling mode, the sampling window size remains constant until the user 
adjusts it.  This mode is particularly effective when the simulation time is stopped.  
Adjusting the sampling window when time is stopped will reveal which thrusters were 
most active in the vicinity of the current frame. 
 
Class FOVManager is used to read the jet information associated with a craft, which is 
always stored  in the “fovs.dat” file in the craft directory.  FOVManager also instantiates 
the Thruster objects and connects the thruster to the craft in the object hierarchy and 
reference frame hierarchy.  Class Thruster  is derived from class FieldOfViewCone and 
adds functions for handling the jet firing history visualization techniques. 
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4.22 Plotting  
 
The SEE plotting routines make use of the Qwt widget libraries to graphically display the 
plot data, and are otherwise implemented like a time-stepped analysis tool. The user sets 
up the desired plot parameters via the wizard interface, and selects Finish to start the plot 
data collection procedure.  For all plots except Jet Firing Histories,  clicking the Finish 
button sets a flag that directs the SEE to take control of the simulation time and collect 
the desired plot data.  The data may include one or more vectors of time-dependent 
parameters.  Each of these vectors and a vector containing the Julian date of each 
sampled time is sent by the PlotManager object to the PlotDialog widget.  In class 
PlotDialog the vectors are converted to plot lines utilizing the Qwt graphing widgets.  
For the Jet Firing History case, data is not sampled inside the event loop but is read 
directly from the jet history data stored in the Thruster objects.  
 
In the plot display the current simulation time is always marked by a red vertical line 
unless the plot window does not span the current time.   
 
Note that the plot data cannot be changed after the plot has been drawn.  If the user 
makes changes to the mission after a plot has been made (e.g. changed the attitude 
parameters of a spacecraft after the yaw-pitch-roll sequence has been plotted), these 
changes will not be reflected on an existing plot.  New plots will of course make use of 
all current data that exists before the plotting wizard is completed. 
 
4.23 Macros 
 
Macros are a convenient means for performing repetitive tasks within the SEE 
application.  Scenarios in which the user needs to repeatedly create lines-of-sight or run 
thousands of collision analyses in batch can benefit from the use of macros. In brief, 
macros are created and managed and activated through the MacroManager class.  Even 
though it is the primary container, the Macro class is extremely simple.  It contains a list 
of Commands, a method for adding Commands, and an output operator.  The Command class 
is the workhorse of macro implementation.  This base class is subclassed in one-to-one 
correspondence with the SEE managers.  Each Command object stores an action to be 
implemented by some SEE manager and all of the parameters required by that action.  
When a macro is activated, the MacroManager is responsible for sending each of these 
commands to the appropriate manager within the SEE application.  In turn, each manager 
is responsible for activating the action issued by the command. 
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Figure 20:  Macro Classes 

 
The Command Class 
 
Each SEE manager should have a corresponding command class that inherits the 
Command class.  The subclass must, in its constructor, register all actions handled by the 
manager along with a list of parameters for each action.  A command is created by setting 
the desired action and appropriate parameters.  The subclass typically need only 
implement the methods for saving or retrieving parameters whose values are to be chosen 
from a list.  Most input, output and parameter retrieval is handled by the Command base 
class.  Note that the parameter values are stored using void pointers and type information.  
Thus any subclass accessing the parameters must perform dynamic type casting. 
 
Creating a Macro 
 
Loading, saving, creating, and activating macros are all within the purview of the 
MacroManager class.  To create a macro, a name must be supplied to the 
MacroManager’s createMacro command.  A pointer to an empty macro is returned to 
the caller.  Commands are created by sending a manager type (or category) to the 
MacroManager’s createCommand method.  A pointer to an empty command is returned 
to the caller.  The command’s action is set and the appropriate parameters are stored 
within the command.  The command is then added to the macro.  The order in which 
commands are added will determine the order in which they are executed when the macro 
is activated. 
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Activating a Macro 
 
Sending a name to the MacroManager’s activateMacro command will start the playing 
of any macro matching that name.  The MacroManager steps through the macro’s list of 
commands in order.  The command type is identified and the command is sent to the 
appropriate SEE manager’s doCommand method.  The SEE manager parses the 
command’s action and parameters and performs the required duties.  When the action is 
complete, the SEE manager emits a commandDone signal.  The MacroManager picks up 
this signal and the next command in the macro is issued.  The use of signals allows the 
macro to execute in a linear fashion while maintaining the main event loop. 
 
4.24 Movie Capture 
 
The recording of AVI movie files is a two-phase process, preparing the frames (images) 
and writing the movie file.  An AVI file consists of a sequence of still images which 
when played in rapid succession produce an animated effect.  In the SEE application, 
movie images are captured using the same device as still image captures, a 
gzImageRender object.  This object acts as a virtual camera, the only difference being 
that results are rendered into memory rather than to the screen.  The gzImageRender 
object renders the current scene to a gzImage_RGBA_8 object whose width and height 
match that of the current screen window.  The pixel color information is then extracted 
from the gzImage_RGBA_8 object and stored in a BGRA byte buffer for movie 
processing. 
 
The creation of AVI movie files uses platform dependent code.  The ability to record AVI 
files is currently restricted to the Win32 platform.  The platform dependent code is 
wrapped within the Movie object so that the SEE application my interface with Movie 
object in a platform independent fashion.  The MSVC++ compiler on Win32 platforms 
supplies the library that generates the AVI files.  An AVI library will be needed for the 
Unix platforms. 
 
The three steps for creating an AVI file are opening the file for writing, writing each 
frame to the file, and then closing the file.  The Movie object’s open method requires an 
output file name, the size of the images to be added, the playback rate, and whether or not 
the file is to be compressed.  If the file is to be compressed, the Cinepak compression 
codec is used and a compression rate should be supplied.  After the movie file has been 
opened, each frame is added to the file by sending the Movie object a buffer of pixel color 
data corresponding to the size specified in the open command.  After all the frames have 
been added, a simple close method should be called. 
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The Movie object also offers a static method for compressing uncompressed movie files.  
The name of an existing uncompressed AVI file and the output file name should be 
supplied as well as the level of compression desired.  The routine will read in the 
uncompressed file and produce a file compressed using the Cinepak codec.  If a Qt 
progress bar is supplied, it will be updated to show the progress of the compression.  The 
SEE application uses the Movie object’s compress method within a Qt thread so that the 
main application may continue to operate during the compression of a file.  Progress is 
displayed on the right end of the main window’s status bar. 
 

4.25 Online Help 
 
Online help features are integrated in the SEE by utilizing the Qt Assistant, a help 
browser freely distributed within the Qt development package.  The Qt Assistant is 
customized by the creation of an Assitant document profile, a file format which is fully 
documented in the Qt online manuals.  A help window is launched from within the SEE 
by instantiating a QAssitantClient object and specifying a URL pointing to the file to be 
displayed.   
 
All help windows are launched from the MainWindow object.  Any dialog that needs to 
activate a help window does so by emitting a signal which must be connected to the 
MainWindow’s openHelpAssistant( ) slot.  The QAssistantClient will launch the Qt 
Assistant and establish communication with that process.  Future requests will be 
displayed in the same process window if the user has not closed it; otherwise, a new 
process will be launched. 
 
A given SEE dialog is connected to a specific URL in the HelpDesk object.  The 
HelpDesk maintains a map of dialog names and URLs.  Currently, all help pages are 
extracted from the SEE User Guide.  Should the user guide be significantly altered, then 
the HelpDesk must reflect those changes. 



SEE Developer Guide 

63 

4.25.1 SEE FILE SYSTEM 
 

The SEE files are categorized as either read-only or as user files.  The read-only files 
include the SEE executables as well as data and images needed to support the application 
at run-time.  The read-only files are not modified during program execution.  The user 
files include missions, crafts, objects, screen-captures and other data files that can be 
modified during program execution. 
 
During the program installation the SEE read-only files are copied to the user-selected 
target destination directory.  On Windows systems this directory is set to the Program 
Files area by default.  Installation into the default area may therefore require 
administrator privileges. Also, a sample user directory containing several missions, crafts 
and miscellaneous models is copied to the read-only area.   
 
When the SEE application is run by a new user for the first time, the user will be 
prompted to select a working or “user” directory where they have file-writing 
permissions.  The user is also given the option either to have the SEE user sample 
directory copied to the selected user directory, or to select an existing SEE user area. The 
SEE application will not run without a valid SEE user directory having been specified.  
The directory structure of the read-only and user areas in shown in Appendix A. 
 
After a valid SEE user area has been selected, the location of this directory is written in 
an initialization file (“see.ini”) so the user area can be automatically located the next time 
the current user runs the SEE.  The file see.ini is saved in the directory pointed to by the 
QDir::home () method in the QT API.  According to the QT documentation, this method 
returns the following directory name: 
 
“Under Windows the HOME environment variable is used. If this does not exist the 
USERPROFILE environment variable is used. If that does not exist the path is formed by 
concatenating the HOMEDRIVE and HOMEPATH environment variables. If they don't 
exist the rootDirPath() is used (this uses the SystemDrive environment variable). If none 
of these exist "C:\" is used.” 
 
The user directory location may be changed during program execution by user request.  
When this occurs the new directory location is updated in the see.ini file.
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5 VERIFICATION 
 

The results of recent tests of the SEE dynamics routines and planned tests are described 
here.  These tests should be performed when modifications to the SEE dynamics codes 
are made. 
 
5.1 Test Case 1 
 
Objective: 
 
Perform a visual check of a spacecraft object position over the Earth within the SEE 
spacecraft to known spacecraft position over Earth.  This should verify that a craft placed 
in Earth orbit with known orbital elements is accurately placed within the SEE 
environment, relative to the latitude/longitude grid on the SEE Earth.  The approach 
would be to put the orbit elements for a known object into both the SEE and Satellite 
Tool Kit (STK) software, and perform visual and measured comparisons for the object 
latitude and longitude at the time for which the orbit elements were specified. 
 
The spacecraft chosen was the International Space Station (ISS).  The position 
information for ISS was taken from published two line element sets (TLE) published by 
NORAD and used for object tracking over short durations (TLE found at 
'http://www.hq.nasa.gov/osf/station/viewing/issvis.html').   
The TLE set for ISS at 00:17am EST on 12/03/2002 were obtained.  TLE information is 
specified relative to the true equator, mean ecliptic of epoch (TEME) coordinate frame.  
The data was: 
 
ISS 
1 25544U 98067A   02337.22028935  .00190497  00000-0  25489-2 0  4351 
2 25544  51.6340 284.2634 0003290 235.0992 330.7125 15.56838241230339 
 
Name......................................ISS 
NORAD ID#.................................25544 
Epoch Year................................2002 
Epoch Day.................................337.2203 = 12/3/02  00:17am 
EST 
Mean Altitude (km)........................396.768 
Period (min)..............................92.49 
Apogee (km)...............................398.997 
Perigee (km)..............................394.539 
Inclination (degrees).....................51.634 
Right Ascension of Ascending 
  Node (RAAN, degrees)....................284.2634 
Eccentricity..............................0.000329 
Argument of Perigee (degrees).............235.0992 
Mean Anomaly (degrees)....................330.7125 
Mean Motion (revs. per 24-hr. day)........15.56838 
Decay Rate................................0.00190497 
Epoch Revolution (since Zarya launch).....23033 
Element Set#..............................435 
Visible up to Latitude (degrees)..........71.3 
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The above epoch is 05:17:13 am UT, or 2452611.7203 Julian date. 
 
The TLE information for the TEME coordinate frame was converted to J2000 orbit 
elements by utilizing the menus within the STK toolkit.  The resulting J2000 orbital 
elements for the ISS used were: 
Time (UTCG)………………………………………………………………………………3 Dec 2002 05:17:13.00 
Semi-major Axis (km)………………………………………………………6774.904955 
Eccentricity……………………………………………………………………………0.000329                
Inclination (deg)………………………………………………………………51.620        
RAAN (deg)…………………………………………………………………………………284.228                  
Arg of Perigee (deg)………………………………………………………235.096                
Mean Anomaly (deg)……………………………………………………………330.712 
 

Information extracted from STK for the ISS with the above orbital elements was: 
Time(UTCG)…………………………………………………………………………………3 Dec 2002 05:17:13.00 
Latitude (deg North)………………………………………………………-20.064 
Longitude (deg East)………………………………………………………-30.214 
Altitude (km)…………………………………………………………………………397.323361 
Spacecraft just East off the coast of South America. 

 
Results from the SEE using the J2000 orbit elements above were: 
Spacecraft appears in approximately the same place as in the STK model. 
Estimated Latitude (deg North) = -20 +/- 1. 
Estimated Longitude (deg East) = -30 +/- 1 

The  latitude and longitude grid within the SEE has a resolution of 10 degrees between 
lines, therefore the estimated accuracy of measurements (done visually) was +/- 1 degree.  
The SEE currently doesn't contain a routine to report sub-object point latitude and 
longitude.  
 

Additionally, the Moon position at time zero is given within the STK model to be: 
Time (UTCG)……………………………………………………………………………3 Dec 2002 05:17:13.00 
Latitude (deg North)……………………………………………………-18.092 
Longitude (deg East)……………………………………………………82.696 
Altitude (km)………………………………………………………………………356475.066483  
 

Results from the SEE for the Moon position at time zero were: 
Time (UTCG)……………………………………………………………………………3 Dec 2002 05:17:13.00 
Latitude (deg North)……………………………………………………___________ 
Longitude (deg East)……………………………………………………___________ 
Altitude (km)………………………………………………………………………___________ 
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5.2 Test Case 2 
 
Objective: 
 
Estimate the accuracy of placement of the continental map and latitude/longitude grid on 
the Earth sphere relative to an external reference point, and relative to each other. 
 

Important notes about latitude and longitude estimations within SEE: 
 
The accuracy of the estimation in latitude and longitude is limited by the accuracy of two 
separate steps that have been used to position the continents and lat-long grid on the 
Earth at a reference time: 
 

1. How accurately the continental texture map features line up with a reference line 
(such as a line connecting the Earth and Sun) at a specific date and specific time 
as compared to a reference measurement.  Checks have been performed to test the 
current alignment, and the results are summarized below.  

2. How accurately the lat-long grid is located relative to the texture map of the 
continents that is used , i.e. how well the 0 degree longitude line aligns with the 
apparent position of Greenwich, England, and how well the 0 degree latitude line 
aligns with an appropriate feature on the continents. This is dependent on the 
detail of the grid (number of pixels wide each lat-long line consists of) and the 
accuracy in estimation of the approximate location of the reference points 
(Greenwich, etc.) on the continent texture map. 

 
The lat-long grid was aligned visually by D. Murphy and D. Cornelius on top of the Earth 
texture map being used by the SEE on 12/5/2002.  A new Earth texture map with lat-long 
grid included was then created.  This new texture map was used to make the estimations 
in lat-long that are quoted for the test cases. 
 
Accuracy of the lat-long to continent texture map alignment: 

1. Within the SEE texture map, each lat-long line is 3 pixels wide.  The assumption 
was made that the middle pixel was the center of the line, leading to a line 
placement accuracy of ½ pixel.  The position of reference locations within the 
continent texture map was estimated to be within 1 pixel.  The texture map of the 
entire globe consists of a picture that is 1024 pixels wide and 512 pixels tall, a 
total placement error of +/- 1.5 pixels, or 0.53 degrees in both longitude and 
latitude. 

 
Accuracy of the placement of the texture map on the Earth sphere relative to a reference 
object: 
 
The sub-solar point on the Earth for various dates was used to estimate the accuracy of 
the rotational alignment of the Earth with a reference object.   Multiple dates were 
selected between 1 Jan 1980 and 1 Jan 2040.  Comparison of the time of prime meridian 
alignment with the sub-solar point was made between the SEE and STK.  Results are 
summarized in Table 1 below. 
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Table 1.  Estimated time of Sub-Solar Point Alignment with the Prime Meridian for SEE 
versus STK. 

SEE STK   
 

Date 
Time of Prime 
Meridian 
Alignment with 
Sub-solar Point 
(hh:mm:ss UT) * 

Latitude of Su-
solar Point, 
(degrees North) 
** 

Time of Prime 
Meridian 
Alignment with 
Sub-solar Point 
(hh:mm:ss UT) 

Latitude of Su-
solar Point, 
(degrees North) 

Difference, 
SEE - STK 
(seconds) 

1 Jan 1980 12:04:48 -23 12:03:18 - 23.05 90 
1 Jan 1990 12:04:36 -23 12:03:33 -23.00 63 
1 Jan 2000 12:04:08 -23 12:03:18 -23.02 50 

30 June 2000 12:04:29 23 12:03:43 23.13 46 
1 Jan 2001 12:04:15 -23 12:03:41 -22.97 34 
1 Jan 2010 12:03:48 -23 12:03:34 -22.99 14 
1 Jan 2020 12:03:10 -23 12:03:21 -23.02 -11 
1 Jan 2040 12:02:21 -23 12:03:22 -23.01 -61 

*   Estimated error in time of sub-solar point alignment with Prime Meridian was ± 30 seconds, or ± 0.125 
degrees longitude (based on a sidereal day of 23h 56 m 4s). 
** Estimation of the sub-solar latitude within the SEE could only be made to ± 1 degree. 
 

 
1. Sub-solar alignment with the equatorial plane for the year 2000.  The time of the 

year for which the sun was aligned with the true of date vernal equinox for the 
year 2000 was also estimated.  This time occurs when the sun crosses the 
equatorial plane traveling in a northward direction. 

a. SEE 
i. Time of zero latitude for the sub-solar point was estimated to be 20 

March 2000 17:00:00, at about 73 degrees west longitude.   
ii. Due to the slow motion of the sun in the north-south direction 

(caused by Earth motion about the Sun), there is a large time of 
occurrence error on this number.  For ~1/3 of a line width 
movement of the sub-solar point (the approximate width of the 
texture map equator line center pixel), the error estimation in this 
time estimate is +/- 10 hours, or +/- 150 degrees longitude. 

iii. At the apparent time of the equatorial crossing for the SEE model 
(20 March 2000 17:00:00), the STK model indicated a sub-solar 
latitude of only 0.16 degrees, which could be used as a basis for 
the error in estimation of object latitude within the SEE. 

b. STK 
i. Time of zero latitude for the sub-solar point was extracted to be 20 

March 2000  07:27:00.00, at a longitude of 70.11 degrees. 
ii. A +/- 10 hour window in the STK data indicates a north-south sub-

solar point movement of only +/- 0.165 degrees. 
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5.3 Test Case 3: 
 
Objective: 
 
The goal of this series of tests was to estimate the accuracy of the position of the primary 
planets and the Earth Moon, relative to a well respected planetary ephemeris data source.  
The data source chosen for comparison was the JPL Horizons website, which reports out 
ephemeris data for solar system objects up to 2040 AD (depending on the object/body, 
ephemeris data may only be available through ~2025).  The JPL ephemerides are based 
upon numerical integration techniques that calculate the position and velocity of objects 
due to multi-body perturbations.  
 
Comparison was performed by extracting the position and velocity of each object of 
interest, relative to its primary central body, from the SEE and comparing the results to 
values obtained from the Horizons website.  For each of the primary planets (Mercury 
through Pluto), this meant differencing the JPL and SEE position data relative to the 
center of the Sun.  For the Earth Moon, this meant differencing the Moon position 
relative to the center of the Earth. 
 
Four plots of the resulting data are presented for each planet or moon.  In the first two 
plots, the absolute difference in position between the JPL and SEE data is shown in km, 
and as a percentage of the orbit semi-major axis.  The second two plots show the 
difference in velocity between JPL and SEE for the object, both in km/s and as a percent 
of the average object speed. 
 
Plots showing the position and velocity comparisons of the SEE with Horizons data are 
provided in Figures 22 through 37.
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Earth 

 
Figure 21.  Comparison of Earth Position from JPL Horizons and SEE for the years 2000-2040 

 

 
Figure 22.  Comparison of Earth Velocity from JPL Horizons and SEE for the years 2000-2040 
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Earth Moon 

 
Figure 23: Comparison of Moon Position from JPL Horizons and SEE for the years 2000-2040 

 
Figure 24: Comparison of Moon Velocity from JPL Horizons and SEE for the years 2000-2040 
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Mercury 

 
Figure 25: Comparison of Mercury Position from JPL Horizons and SEE for the years 2000-2040 

 

 
Figure 26: Comparison of Mercury Velocity from JPL Horizons and SEE for the years 2000-2040 



SEE Developer Guide 

72 

Venus 

 
 Figure 27: Comparison of Venus Position from JPL Horizons and SEE for the years 2000-2040 

 
Figure 28: Comparison of Venus Velocity from JPL Horizons and SEE for the years 2000-2040 
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Mars 

 
Figure 29: Comparison of Mars Position from JPL Horizons and SEE for the years 2000-2040 

 
Figure 30: Comparison of Mars Velocity from JPL Horizons and SEE for the years 2000-2040 
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Jupiter 
Note: JPL Horizons data not available for Jupiter past 31 December 2024 00:00.00. 

  
Figure 31: Comparison of Jupiter Position from JPL Horizons and SEE for the years 2000-2025 
 

 
Figure 32: Comparison of Jupiter Velocity from JPL Horizons and SEE for the years 2000-2025 
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Saturn 
Note: JPL Horizons data not available for Saturn past 16 January 2025 00:00.00. 

   
Figure 33: Comparison of Saturn Position from JPL Horizons and SEE for the years 2000-2025 

 

 
Figure 34: Comparison of Saturn Velocity from JPL Horizons and SEE for the years 2000-2025 
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Uranus 
Note: JPL Horizons data not available for Uranus past 4 January 2025 00:00.00. 

 
Figure 35: Comparison of Uranus Position from JPL Horizons and SEE for the years 2000-2025 

 
Figure 36: Comparison of Uranus Velocity from JPL Horizons and SEE for the years 2000-2025 
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Neptune 

 
Figure 37: Comparison of Neptune Position from JPL Horizons and SEE for the years 2000-2040 

 

 
Figure 38: Comparison of Neptune Velocity from JPL Horizons and SEE for the years 2000-2040 
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Pluto 

 
Figure 39: Comparison of Pluto Position from JPL Horizons and SEE for the years 2000-2040 

 
Figure 40: Comparison of Pluto Velocity from JPL Horizons and SEE for the years 2000-2040 
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Discussion: 
 
Instructions for Obtaining JPL Horizons Ephemeris Data: 
 
The process for obtaining the desired ephemeris data from the JPL Horizons system is 
fairly straightforward, and well described in the Horizons User's manual, located at 
'http://ssd.jpl.nasa.gov/horizons_doc.html'.  A brief version of the process is documented 
here to facilitate a quick update of the ephemeris data, if necessary. 
 
Although there are three methods for accessing data in the Horizons database (telnet, 
WWW, and email), the easiest and most thorough (as far as amount of data available) 
was determined to be the telnet method, described below.  The WWW interface has 
limitations that make it unusable for obtaining the data necessary for generation of the 
comparison plots in this report.  The data obtained for these plots was the Cartesian 
coordinates of the center of each body relative to the Sun, and reported in the J2000 
coordinate frame.  At any point in the Horizons system help can be obtained by typing '?' 
(or '?!' for extended help). 
 
To obtain different or updated Horizon's data: 
  

1. Open a browser window, and go the Horizons Website URL: 
'http://ssd.jpl.nasa.gov/horizons.html'. 

2. Click on the telnet link at the top of the page.  This should open a telnet window 
automatically within MS Windows.  If this fails, manually open a telnet session 
with 'telnet ssd.jpl.nasa.gov 6775'.  This should anonymously log into the 
Horizon's system, and result in a 'Horizons>' system prompt. 

3. Enter the object number or name of the object for which position and velocity 
information is desired.  Each object has a specific number assigned to it, for 
example, the planet Mercury is ID 199, while the Mercury barycenter is ID 1.  A 
search is possible by using an asterisk (*) as a wildcard in the name of the planet 
desired. 

4. Once the object of interest is selected, a summary of the object information 
(object gravitational constant, diameter, etc.) will be displayed.  At this point, you 
can select to have the information emailed to you, select to retrieve it via FTP, or 
continue to the object ephemeris. 

5. Selecting 'Ephemeris' by typing 'E' will bring you to a prompt which allows you to 
retrieve the observed position of the object from a location on the Earth's surface 
(observe,'o'),  the planet's orbital elements (elements, 'e'), or positional vector 
(vectors, 'v').  Select 'v'. 

6. The coordinate center for the positional information must be supplied.  Type '500', 
which corresponds to the Sun's body center location.  This same information 
could have been extracted from the Horizons system by typing '* @ sun', which 
would report all body locations on/in the sun that are part of the database.  Type 
'?' for more help. 

7. The next selection is to define the reference plane for the data.   The three 
selections are 'frame', which is the Earth's mean equator and equinox of the 
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reference Epoch, 'body', which is the selected body's equator and node of date, or 
'eclip', which is the mean ecliptic and equinox of the reference epoch.  Select 
'eclip'. 

8. Next, the starting and ending dates for the desired data need to be entered in the 
format indicated. 

9. The output interval for the desired data also needs to be specified.  The 
comparison plots were done on an interval of 5 days, or '5d'. 

10. The output table default values for coordinate frame, light travel time corrections, 
units of distance and time measure, output format, output type , and header labels 
are displayed.  If the user desires to use the indicated quantities, then a 'y' or 
carriage return will accept the values and continue to the next step.   

a. Make sure that for these comparisons that the Ref. Frame = ICRF/J2000, 
Corrections = NONE, Units = km-s, CSV format = yes, table format = 03, 
and vector label = yes. 

11. The requested data is now generated and displayed one screen at a time.  When 
done inspecting the data to make sure that it is the information desired, type 'q' to 
skip the rest of the display. 

12. The data just displayed can now be retrieved through FTP, Kermit, or Mail 
(email).  Method of retrieval is up to the user, and directions for retrieval are 
given for each method selected. 

13. Selecting 'Again' or 'A' will keep the same body of interest and allow the user to 
select more information for retrieval (such as orbital elements).  It is equivalent to 
starting the above process at step 5. 

14. Selecting 'New Case' or 'N' will put the user back at the original Horizon's prompt, 
allowing them to select a new body of interest. 
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6 ABBREVIATIONS AND ACRONYMS 
 
 
 
API  Application Programming Interface 
CAPS   Comet and Asteroid Protection System 
DAC     Design Analysis Cycle 
DDEX  Dynamics Data Extractor 
ISS  International Space Station 
JSC  Johnson Space Center 
LaRC    Langley Research Center 
RASC  Revolutionary Aerospace Systems Concepts 
SEE  Synergistic Engineering Environment 
SEMDA Systems Engineering, Modeling and Data Analysis 
STL  Stereolithography 
VIPER  Vehicle Integrated Performance and Resources 
VRML  Virtual Reality Modeling Language 
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7 NOTES 
 

1. The SEE public home page http://centauri.larc.nasa.gov/see contains examples of 
visualizations created with the SEE software.  These include the evaluation of 
station contingency maneuvers planned for the event of a dual failure of the 
primary and redundant Plasma Contactor Units, a review of the station flight 
attitude using the playback of actual ISS telemetry streams, and an analysis of the 
data-taking opportunities of the SAGE III experiment (an externally mounted 
payload that requires a line-of-sight to the Sun at periods near dusk and dawn.) 

 
2. The distinction made here between internal and external programs is based on 

whether the code is compiled into the SEE software itself, or runs as a separate 
executable.  Examples of external programs used for Build I are the Space Station 
Rigid Body Dynamics Simulator (SSRMBS) developed at JSC, and DOCKSIM, a 
vehicle docking simulation developed at Langley Research Center.   

 
3. In Build I, shared memory and TCP/IP packets were used to communicate signals 

from the GUI to the main SEE process. 
 

4. Since the QT timer is already allowing for the processing of user inputs before 
allowing the event loop to proceed , an explicit respond phase may prove to be 
unnecessary.  

 
5. The joint location information needed by the visualization application to properly 

place the station rigid bodies is not present in the SEMDA model file.  The I-
DEAS application is used to add this data after the models are received from the 
SEMDA lab but before the model file is exported to an ISS SEE compatible 
format by the DDEX program. 

http://centauri.larc.nasa.gov/see
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8 APPENDIX A:  SEE DIRECTORY STRUCTURE 
 

READ ONLY DIRECTORIES: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                      $SEE_HOME 
 
 
   data                 docs                   exe_win32    
            exe_irix 
            exe_linux 
 
 
 
 
 
 
 
 
 
 
 
 
 
s
 
 
 
 
 
 
 
 
 

user and 
developer 
document-
ation 

platform 
dependant 
executable 
codes 

The se
source
a direc
this on
initialization 
data, model 
geometry, 
textures, 
images and 
icons 
83 

ource_code 

 see    ddex   arcdsee  pqp  qwt   designer_plugins 

e source codes.  All 
s should be placed in 
tory one level below 
e. Other sources for separate executables used by the SEE: 

ddex             - CAD conversion tool    
arcdsee - NASA FORTRAN codes for ARCD (SEE version) 
pqp - PQP collision detection libraries 
qwt - Plotting extension  for QT 
designer_plugins – QT GUI designer plugins for custom widgets 
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Appendix A: SEE Directory Structure (continued) 
 
 
 

 
USER (write-able) DIRECTORIES: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

$SEE_USER 
 
 
   images             object_lib                  missions       working  

Screen 
snapshots 
stored here. 

Custom parts, 
crafts, 
geometry, and 
other objects 
exported or 
imported by the 
user 

Saved missions. Temporary 
storage area for 
files needed to 
support the 
currently loaded 
mission. 
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9 APPENDIX B:  ANNOTED DDEX FILE 
 
This annotated example of a configuration (.ddex file) corresponds to Stage 5A of the 
DAC 8 assembly sequence.  
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